

La mise en œuvre de la transition énergétique par les collectivités territoriales

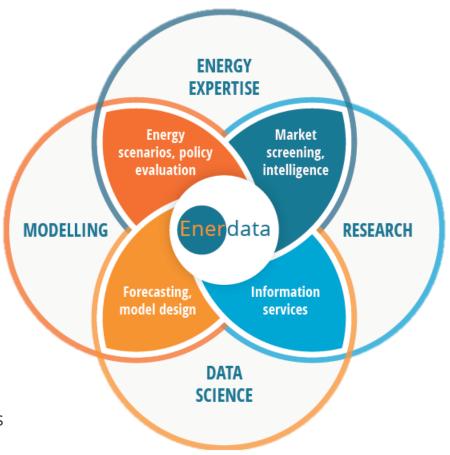
Comment décliner et adapter les objectifs nationaux pour agir efficacement au niveau local ?

Depuis 1991, une expertise reconnue dans la prospective énergie-climat

- Société indépendante de recherche et de conseil en matière d'énergie depuis 1991
- > Expertise en analyse et prospective des questions énergétiques et climatiques mondiales
- Bases de données sectorielles et modèles internes et mondialement reconnus

- Siège à Grenoble ; filiale à Singapour
- > Une portée mondiale : Clients et projets en Europe, Asie, Amériques, Moyen Orient, Afrique
- > Avec des **déclinaisons locales** : Régions, Métropoles...
- > En contact avec des institutions publiques de premier plan, des acteurs financiers et des entreprises, des universitaires et des ONG

Nos services – De la R&D à la modélisation en passant par la science des données


Modélisation

- Scénarios Energie-Climat
- Analyse de l'alignement climatique de trajectoires par secteur et pays

Expertise

- Marchés
- Piliers de la transition énergétique : sobriété, efficacité, décarbonation, flexibilité
- Toutes énergies, tous secteurs dans plus de 150 pays

Connaissance des marchés

- Etudes de marché
- Intelligence économique
- Veille
- Suivi des politiques dans le monde

Data science

- Collecte, consolidation et analyse des données énergétiques
- Prévisions de marché: offre, demande et prix

Nos approches sur les territoires

Des trajectoires nationales...

Réglementaires

Accompagnement du Ministère de la transition écologique et de la cohésion des territoires dans l'élaboration de la SFEC (à paraître en 2024)

Autres exercices prospectifs

3/24

GRENOBLE ALPES MÉTROPOLE

Accompagnement de l'élaboration des scénarios Transition(s) 2050 Accompagnement scénario PPE des territoires

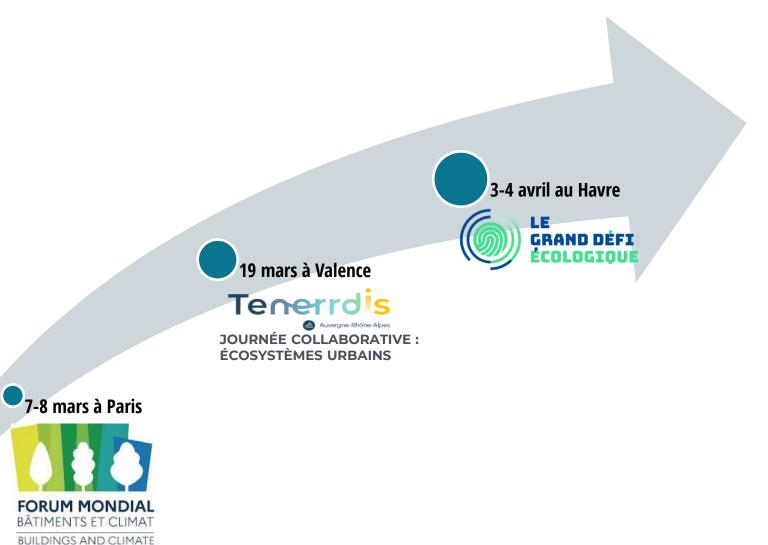
... aux trajectoires et plans d'actions sur les territoires

Déclinaison des objectifs réglementaires (SRADDET)

Guide méthodologique à destination des territoires

Déclinaison des récits et scénarios

Hauts de France Bourgogne Franche Comté Programme de mesures



Retrouvez-nous prochainement!

GLOBAL FORUM

consulting@enerdata.net

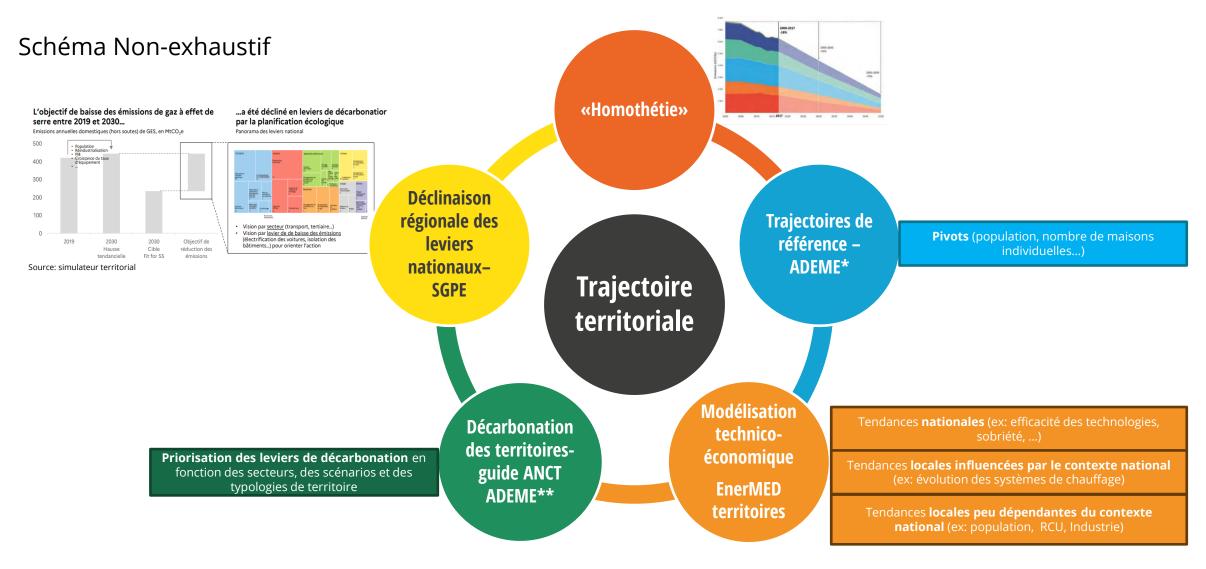
Agenda & Intervenants

- Eléments de contexte : territorialisation des objectifs et plans d'actions
- La territorialisation des scénarios Transition(s) 2050 de l'ADEME à l'échelle de Grenoble Alpes Métropole
- Etude de la décarbonation des transports pour la Région Sud
- Table-ronde
- Questions/réponses

Marie ROUSSELOT **Manager Unité Efficacité Energétique et Demande** Enerdata

Pierre VERRI Vice-président Air Energie Climat *Maire de Gières (38)* Grenoble Alpes Métropole

Pacco BAILLY Analyste senior *Enerdata*


Folco LAVERDIERE Ancien Chef de la mission décarbonation des transports Région SUD Directeur Général de la Société de la Ligne Nouvelle Provence Côte d'Azur

Frédéric PINTO DA ROCHA **Analyste senior** *Enerdata*

La territorialisation – Une multiplicité d'approches pour des problématiques différentes

*Ademe - Construction d'une méthodologie pour élaborer des trajectoires climat de référence adaptées à l'échelle infrarégionale et développement du cadre d'analyse ** Publication à venir

Enerdata

La déclinaison en plans d'actions

Pourquoi?

o Offrir un cadre de référence et d'actions à la collectivité territoriale et ses parties prenantes

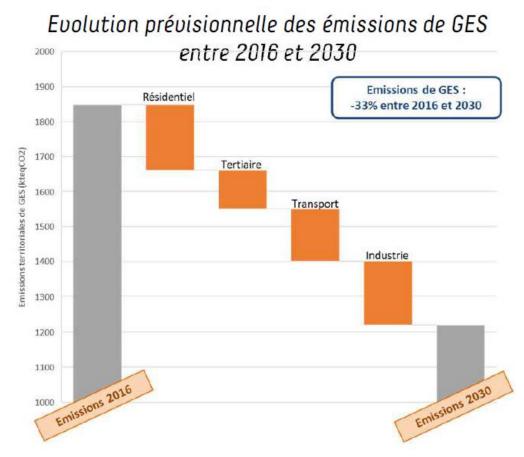
Comment?

- Identification des catégories d'actions
- Choix pertinent
- Priorisation
- Identification des responsables des actions et des indicateurs de suivi

Les enjeux de la planification énergétique à l'échelle des territoires

- 1 Intégrer les spécificités locales dans la planification énergétique
- Assurer la cohérence des exercices aux échelons nationaux et territoriaux
- Poser un cadre commun aux démarches infra-régionales
- Favoriser l'appropriation des enjeux par les parties prenantes et leur mobilisation
- Accélérer la mise en œuvre des actions

Territorialisation des scénarios de l'ADEME à l'échelle de Grenoble Alpes Métropole



Comment inscrire le territoire dans une trajectoire de neutralité carbone ?

- Aborder les enjeux énergie climat avec ambition sur un territoire marqué par la pollution de l'air, et des étés particulièrement chauds
- Une volonté d'approfondir le travail du PCAEM pour se placer à un horizon 2050. Explorer des **scénarios de rupture** permettant de contribuer à la neutralité carbone
- Susciter une appropriation du débat par les citoyens et les élus notamment dans cadre de la convention citoyenne locale
- Eclairer les décisions de politiques publiques à prendre, en particulier en estimant les impacts sur les évolutions de modes de vie, et leur acceptabilité sociale et financière

Les scénarios de l'ADEME permettent d'explorer des futurs contrastés et de susciter le débat.

Source: PCAEM 2018 de Grenoble Alpes Metropole

La déclinaison des scénarios de l'ADEME à l'échelle du territoire

Hypothèses nationales des scénarios de l'ADEME

- Evolution de la part des technologies de chauffage
- Evolution des rénovations

Etat des lieux de la métropole

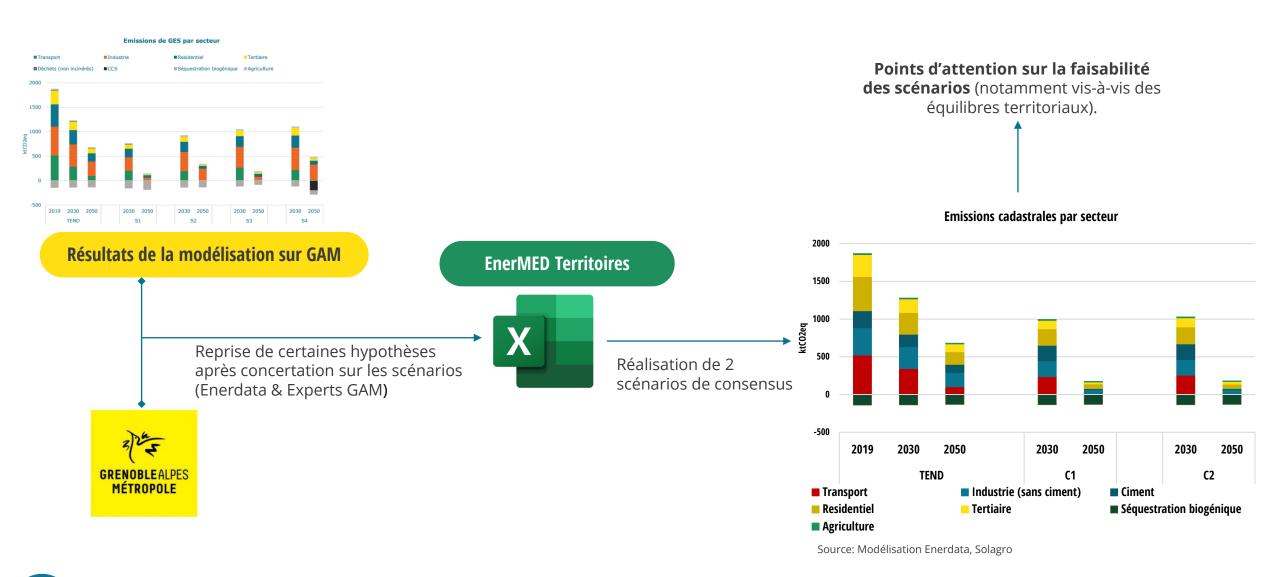


- Prévision de population à l'échelle du territoire
- Bâti actuel et systèmes de chauffage
- Modes de transport
- Etc..

Hypothèses nationales adaptées à l'échelle locale (Enerdata) :

- Evolution de la population
- Impact de la ZFE
- Potentiel du RCU

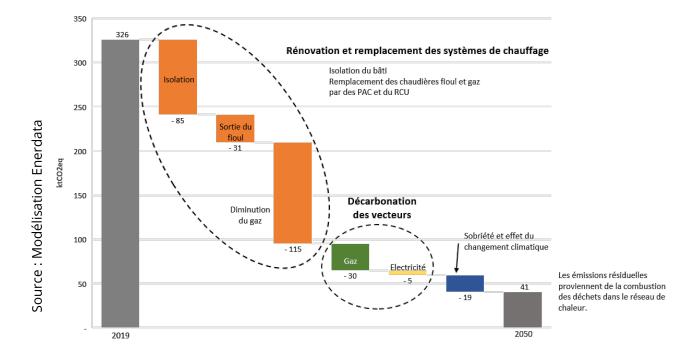
Scénario à l'échelle de GAM

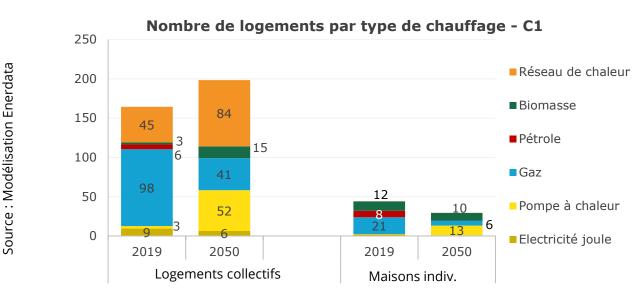


Emissions de GES par secteur

Source: Modélisation Enerdata, Solagro

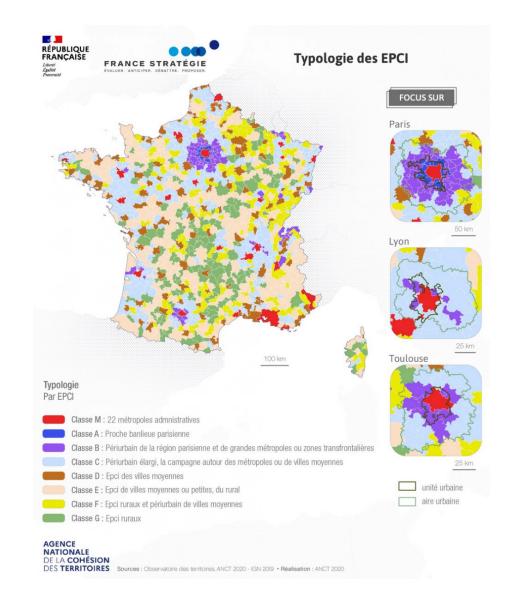
Identification des enjeux et création de 2 scénarios de consensus





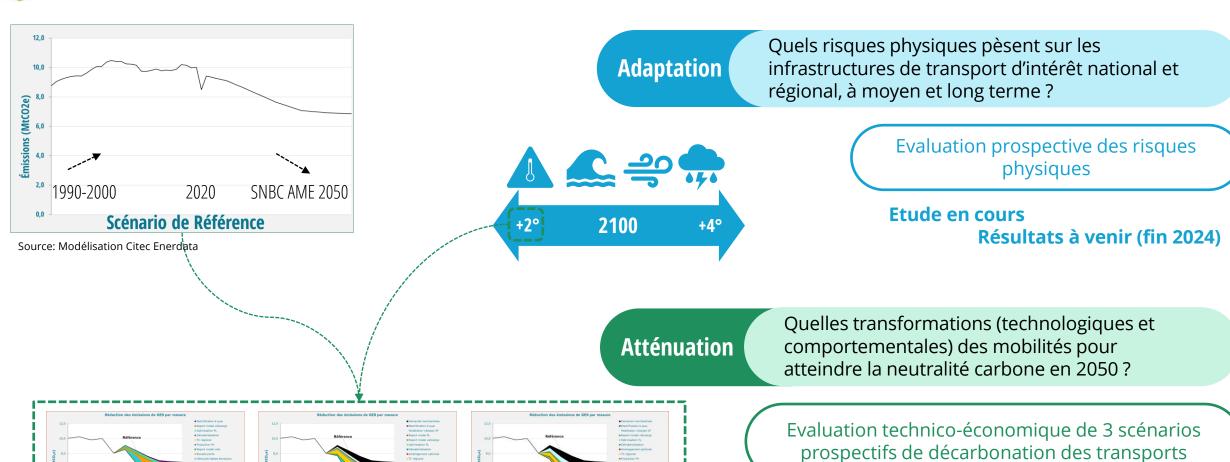
Quelques enseignements

- L'infrastructure du RCU à développer sans augmenter la puissance
- Un développement de la climatisation qui peut être maitrisé en termes d'émissions et d'énergie totale mais des enjeux de pointes et d'ilots de chaleur
- Les opportunités de développement des pompes à chaleur et du gaz dans les bâtiments collectifs à étudier de manière plus précise
- Un fort potentiel de report modal mais qui ne doit pas occulter le potentiel d'électrification du transport individuel
- Une industrie du ciment qui représente une forte part des émissions



Des enseignements généralisables aux territoires urbains?

- Des spécificités territoriales qui ne peuvent pas être ignorées
- Une neutralité carbone (en émissions cadastrales) est un objectif réalisable pour des territoires urbains
- Les émissions scope 3 deviennent prépondérantes au fur et à mesure de la décarbonation du territoire
- Les émissions des installations industrielles sont à analyser de manière spécifique
- Une sobriété qui permet de réduire plus rapidement les émissions des territoires urbains



Etude de décarbonation des transports Région Sud

Viser la neutralité carbone dans le secteur des Transports en 2050

« sobriété et transfert modal »

Etude terminée Résultats obtenus (juin 2023)

« technologique »

« transfert modal »

Un modèle prospectif pour comparer les coûts d'abattement du CO2

Etat des lieux

Hypothèses transports et mobilités

Hypothèses coûts/bénéfices

- Choix des scénarios nationaux
- Collecte des données régionales
- Entretiens avec les experts Coûts d'Abattements

- Cadrage socio-économique
- Paramètres des 16 mesures agissant sur les 6 leviers de décarbonation

- Coûts marchands
- Infrastructures
- Investissement public
- Bénéfices (bruit, polluants, accidentologie, santé)

Orientations régionales

Expertises Modélisation Transports Energie GES

Des scénarios contrastés

S1 - Pari technologique	S2 - Massification du report modal	S3 - Défi de la sobriété
Pas de remise en cause des modes de vie et de consommation, des processus de production, des comportements de mobilité. La demande de mobilité continue de croître.	Report modal massif sur les modes massifiés, actifs et partagés. Diminution de la demande de mobilité.	Recherche d'une diminution très importante des volumes de mobilité. Les leviers principaux sont l'aménagement des territoires, les technologies (véhicules lowtech / ultralégers), le report modal et les taux de remplissage.

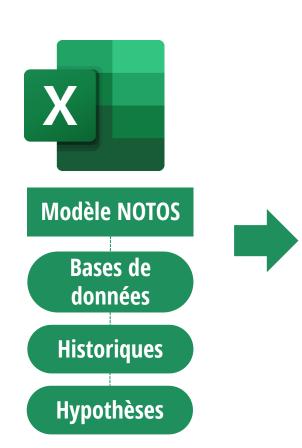
Conversion

Report modal

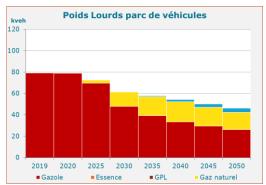
Sobriété

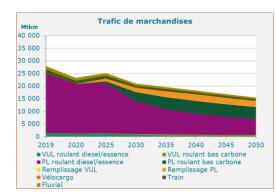
Correspondance Ademe

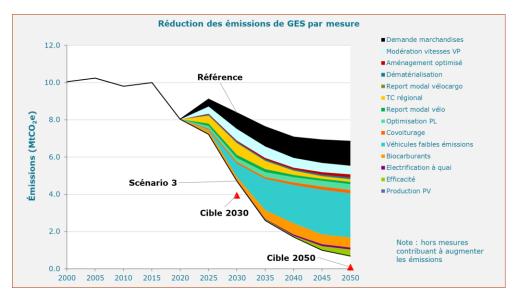
Coopérations territoriales

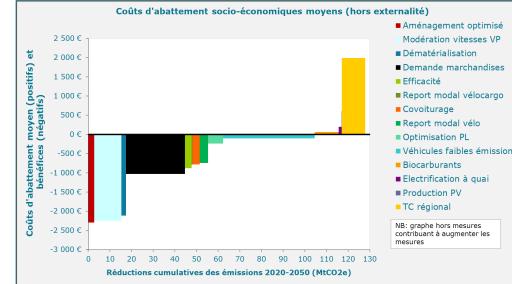


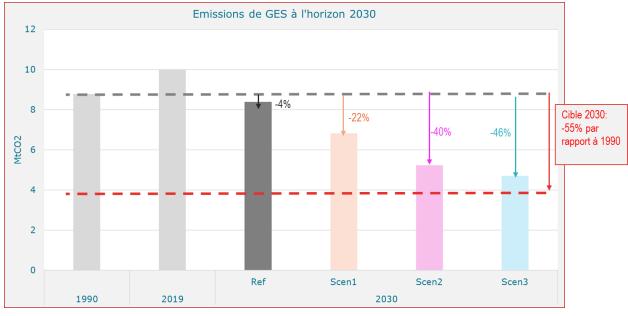
Génération frugale






Une utilisation très large des données et des résultats produits

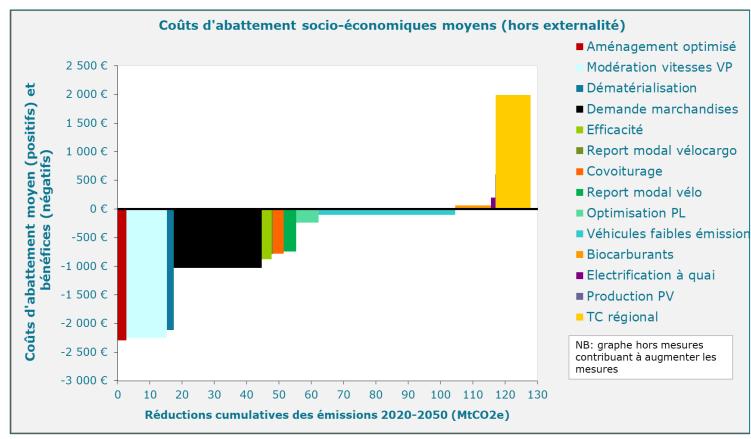




Source: Modélisation Citec Enerdata

Les grandes conclusions de l'étude

- Cible 2030 et 2050 non atteintes mais convergence des scénarios en 2050
 - Mesure principale : véhicules à faible émission
 - H₂ marginal
 - Absorption de GES (technologiques ou naturelles) requises
- Différences entre scénarios :


Source: Modélisation Citec, Enerdata

	Scénario « technologique »	Scénario « Sobriété / transfert modal »
Consommation d'énergie et GES	≥ + lente Electricité ++	⊔ + rapide
Mobilités		□ globale
Mesures phares/impactantes	Véhicules zéro-émission Biocarburants	Diverses
Acteurs phares	UE, Etat, industrie Rôle limité de la Région (subventions à l'achat)	Consommateurs, UE, Etat, collectivités Plusieurs leviers d'action possibles pour la Région

Les grandes conclusions de l'étude

- Coût d'abattement : vélo, modération des vitesses, baisse de la demande de marchandises (co-bénéfices santé et coûts d'infrastructures plus faibles)
- Coût d'abattement : transports en commun (infrastructures)

Source: Modélisation Citec, Enerdata

HELPING YOU SHAPE THE ENERGY TRANSITION

A propos d'Enerdata

Enerdata est une société de recherche indépendante spécialisée dans l'analyse et la prévision des enjeux énergétiques et climatiques, à différentes échelles géographiques (monde, pays ou région) et à différents niveaux économiques et sectoriels. Nous sommes basés à Grenoble, en France, où Enerdata a été fondée en 1991, et nous avons une filiale à Singapour.

En exploitant nos bases de données mondialement reconnues, nos processus de veille stratégique et nos modèles prospectifs, nous aidons nos clients entreprises, investisseurs et autorités publiques du monde entier - à définir leurs politiques, leurs stratégies et leurs plans de développement.

consulting@enerdata.net

https://www.enerdata.fr/

